

6th Workshop on the Effect of Electromagnetic Waves to the Human Body

Current Trends of EMF Regulations and Standard-Compliant Measurements of ELF and HF Radiation

Alexander Scharpf Narda Safety Test Solutions

EMF Regulations in Europe - Examples

Germany

- \Rightarrow General Public: "26. Pollution Control Order"
- ⇒ Occupational: "BGV-B11" "Accident Prevention Order"

• Italy

- ⇒ General Public: "Decree No. 381" and "Max. exposure limits to power frequencies"
- ⇒ Occupational: "Framework Law on Protection against exposure to EMF", now MPEs so far, ICNIRP currently
- Switzerland
 - ⇒ General Public: "Ordinance relating to Protection from Non-Ionizing Radiation"
 - \Rightarrow Occupational: Maximum Permissible Exposure Values at Workplaces

BGR-B11: Rules for the Execution of the Accident Prevention Regulation

Valid for all members of the Professional Associations exposed to EMF.

Contents:

- Definitions
- Actions to prevent hazards due to EMF
- Maximum Permissible Exposure Values
- Measurement Proceedings
 - \Rightarrow Measurement Proceedings according to DIN VDE 0848
 - \Rightarrow Measurement Technology e.g. uncertainty
 - \Rightarrow Preparation and Execution
 - \Rightarrow Where to measure
 - \Rightarrow Measurement Report
- Markings, Signs

Measurement Report

Description of

- \Rightarrow application, technical specs, operating status
- \Rightarrow measurement equipment
- \Rightarrow environmental conditions (temp, humidity)
- \Rightarrow measurement points (area plans, drawing)
- \Rightarrow measurement results (graphics and tables)

⇒ Aim: Reproducible Measurement Results

Example: Deutsche Telekom

- from simulation to measurements
- measurements of all antenna sites
- documentation of the measurement results and environmental conditions
- determination of dangerous areas
- instructions for the different areas
 - \Rightarrow personal monitor is obligatory
 - \Rightarrow following markings
 - \Rightarrow consideration of "low-traffic-periods"
 - \Rightarrow level-down or switch off of services
 - \Rightarrow protection suit
- new measurement and documentation after any changes at the site
 - \Rightarrow problem: time-gap between installation and information

Execution of the Strategic Plan Deutsche Telekom

V/m

- department for the safety in EMF
- developed a RF safety concept
- responsibility for the safety of their maintenance workers and non Telekom members
- own research
- obligatory training for maintenance people
- regularly up-dates by intranet, brochures and videos

Example Italy

• Decree No. 381:

 \Rightarrow 6 V/m for the frequency range 100 KHz - 3 GHz !!!

• Act for the occupational sector is in process,

 \Rightarrow currently ICNIRP occupational MPEs \Rightarrow vew limits will be much more lower

- Diversification into 3 classes
 - \Rightarrow general public
 - \Rightarrow workers
 - \Rightarrow "quality of life" \Rightarrow totally new approach

Example Switzerland

- Ordinance relating to Protection from Non-Ionizing Radiation (ONIR)
 - \Rightarrow Ordinance for the protection of the general public
 - \Rightarrow Issued by the Swiss Federal Government
 - \Rightarrow ICNIRP GP reference levels
 - \Rightarrow Additionally: "Installation Limit Values"
 - \Rightarrow Refers to the radiation of a single installation
 - \Rightarrow To be respected at places of sensitive use only (schools, hospitals, offices, apartments, ...)
 - ⇒ Overhead and cable lines, transformer stations, railways and trams, transmission installations for mobile telecommunications, broadcasting and other wireless applications.
 - \Rightarrow Measurements and/or calculations by authorities

Area Monitoring Systems

Gate Entrance Monitor

Roof Top / Site Monitor

Selective test equipment

- \Rightarrow Spectrum analyser
- Application areas:
 - Laboratory use
 - Complex field measurements

Spectrum analyser

Broadband test equipment

Broadband measuring devices

Benefits

- + Simple operation
- + Isotropic
- + RMS field strength
- + Price
- + Functionality

START			Probe: 9 E	type:	Date: 02-26- 1998
EMR-300 - À-0001-V02.11 CAL factor: 1.000			Max.: OFF Unit: V/m		Average: OFF
Index	Time	х	У	z	RMS
1	12:23:26.0	0.45	0.63	0.24	0.81
2	12:23:28.0	0.41	0.66	0.14	0.79
3	12:23:30.0	0.45	0.66	0.14	0.81
4	12:23:32.0	0.45	0.69	0.14	0.84
5	12:23:34.0	0.45	0.66	0	0.8
6	12:23:36.0	0.45	0.63	0.14	0.79
7	12:23:38.0	0.45	0.66	0.14	0.81

<u>Disadvan-</u> tages

- Less precise
- No frequency allocation

Broadband Measurement: Frequency depending Evaluation (Shaping)

Broadband Measurement: Frequency depending Evaluation (Shaping)

Shaped frequency response

Desirable Characteristics for RF Survey Instruments

- **Electrical Performance**
- \Rightarrow isotropic probe response
- \Rightarrow self-contained power supply (min. 8 h operation)
- \Rightarrow indication of V/m, A/m, mW/cm² and percent of exposure limit
- \Rightarrow remote control
- \Rightarrow extension cable between probe and meter
- \Rightarrow time averaging
- \Rightarrow spatial averaging
- \Rightarrow maximum hold function
- \Rightarrow audio and optical alarm

Desirable Characteristics for RF Survey Instruments

- **Electrical Performance**
- \Rightarrow data logging function
- \Rightarrow auto zero (also under field conditions)
- \Rightarrow insensitivity to thermal variation

Physical

- \Rightarrow portable, low weight, small volume \Rightarrow convenient hand-held operation
- \Rightarrow rugged design, carrying case / strap
- \Rightarrow ease of adjustment and use

Area Monitoring Systems

all-weather proofed housing

permanent power supply, e.g. solar panels

remote control for configuration and analysing

data access via Internet, SMS, environmental conditions board

Thanks for your attention

The End

alex.scharpf@narda-sts.de www.narda-sts.com